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Behavior of the elastic—viscous—plastic (EVP) model for sea ice dynamics is ex-
plored, with particular attention to a necessary numerical linearization of the internal
ice stress term in the momentum equation. Improvements to both the mathematical
and numerical formulations of the model have moderated the impact of linearizing
the stress term; simulations with the original EVP formulation and the improved ver-
sion are used to explain the consequences of using different numerical approaches.
In particular, we discuss the model behavior in two regimes, low ice concentration
such as occurs in the marginal ice zone, and very high ice concentration, where the
ice is nearly rigid. Most of these results are highly relevant to the viscous—plastic
(VP) ice dynamics model on which the EVP model is based. We provide examples
of certain pathologies that the VP model and its numerical formulations exhibit at
steady state. © 2001 Academic Press

Key Wordssea ice; visco-plasticity; constitutive equations; numerical simulation
methods.

1. INTRODUCTION

Historically, the ice dynamics component has been the largest impediment to efficient
ice simulation in coupled ice—ocean numerical models. The viscous—plastic (VP) model
seaice dynamics [8] has a long history of successful applications in a variety of polar stud
It has been thoroughly validated and demonstrated to be quite useful both in “stand-alc
studies of sea ice and in coupled climate simulations. However, because of large viscos
in regions of nearly rigid ice, the VP model requires implicit, iterative numerical method
which are time consuming and adapt poorly to parallel computation. To remedy this,
have modified the model by incorporating an elastic closure, which leads to a fully expli
numerical scheme [12].
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EVP MODEL FOR SEA ICE DYNAMICS 19

Since the introduction of the elastic—viscous—plastic (EVP) model there has been rene
interest in the physical details of the VP model that it was intended to emulate, particule
the internal stress state of the ice. Our elastic modification appears in the equation for th
internal stress, and thus the ice stress lies at the root of differences which appear in EVF
VP simulations of ice velocity. In particular, if proper care is not taken with the VP mode
numerical linearization of the stress term in the momentum equation can cause undesil
phenomena such as slow time response to changes in external forcing, unconverged
states, and anomalously thick boundary layers. The EVP model formulation rectifies sc
of these problems naturally, but because it is originally based on the VP model, it exhil
some of the same behavior.

For example, linearization of the internal stress term is responsible for a problem t
both the VP numerical model and the original EVP formulation exhibited: principal stre
states were widely scattered outside the elliptical yield curve. The constitutive law, wh
is highly nonlinear, must be iterated for the stresses, strain rates, and viscosities define
the problem to all converge. Several changes have been made to the EVP numerical im
since it was originally developed, primarily to address this issue.

A related issue is that the linearization can sometimes destroy the elliptical relations
between the principal stresses, even when the solution is fully converged. We preser
example of this behavior in Appendix A.

This paper highlights the role of numerical linearization in numerical simulations. |
Section 3 we review the results of a high-resolution EVP—VP comparison [13], in whi
time response differences became apparent. A better understanding of the model beh
as aresult of this comparison led naturally to the improvements in the EVP model preset
in Section 4. These improvements ensure that the ice stress state converges to the ana
yield curve which defines the model. Finally, in Sections 5 and 6 we explore the behavio
the EVP model in the two extreme regimes, respectively, low ice concentration, where
ice strength is low and model regularization is unnecessary, and very high ice concentra
where the elastic regularization is most important.

2. MODEL DESCRIPTION
The force balance per unit area in the ice pack is given by a two-dimensional momen

equation,
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where the stress depends nonlinearly on the ice velocity, and represents external
surface forcing on the ice due to wind and ocean stresses, sea surface slope, and Cc
effects. (Table | contains a list of symbols with their definitions and units. For brevity v
use the suffix notation in this section, with the usual convention that terms containin
repeated suffix are summed over all possible values of the suffix [2].)

The internal stress of the ice is represented by the tensdFhe visco-plastic rheology
proposed by Hibler [8] is given by a constitutive law that relatgsand the rates of strain
¢j through an internal ice pressuReand nonlinear bulk and shear viscositiesand,
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TABLE |
Symbols and Units for Variables and Parameters

Symbol Definition Units
c Fractional area covered by ice<0c < 1
C, Ocean drag coefficient 0.0055
A A function of the strain rates -3
At Thermodynamic/advection timestep 3600s
At EVP subcycling timestep s
AX, Ay Grid cell length 16 x 10*'m
8ij Kronecker delta: 1if = j and O ifi # j
E Elastic parameter N/m
e Ratio of ellipse major axis length to minor axis length 2
&j ij -component of rates of strain tensor “1s
f Coriolis parameter A6x 104s?
h Ice thickness m
m Mass per unit area of ice kgfm
P Internal ice pressure N/m
Pu Ocean density 1026 kgfm
aijj ij -component of internal stress tensor N/m
oy, o) Principal stresses N/m
T Damping timescale 1296s
t Independent variable for time s
7, 7j (v, 7y)  Surface stress due to external forcing R/m
Taxs Tay x andy wind stress components N7m
0 Turning angle 0.436332radian
Ua, Va x andy wind velocity components m/s
U,, V, x andy ocean current components m/s
Ui, uj (u, v) Ice velocity components m/s
U, —u| Speed of ocean current relative to ice m/s
Xi, Xj (X, ¥)  Independent variables for space m
¢ Bulk viscosity kals
n Shear viscosity kgls

such that the principal components of stress lie on an elliptical yield curve,
1 n—2< P )
2710” + 4t kkdij + a ij = €ij (2

. 1 3Ui 4 3Uj
EGi==l—+—],
T 2\ax oo

andP is related to the ice thicknessand fractional ice coverageas in [8]:

where

P = (2.75x 10° N/m?)che 201-9) (3)

Here P represents the ice strength, increasing exponentialty-asl. The viscosities are
defined in terms of the strain rates,

é’ = S5 (4)
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P
= oA~ 5
T= oae? ®)
A = [(é,+é5,) (L4 €e72) + de e, + 2%é11é00(1 — €79)] vz, (6)

and become infinite in the limit of zero strain rate. Heze; 2 is the ratio of the major
and minor axis lengths of the elliptical yield curve, and the viscosities and pressure
“effective” quantities whose units reflect an integration of the three-dimensional equat
of motion through the ice thickness in deriving Eq. (1).

To regularize the singularity present in the viscosities, Hibler set upper and lower bou
for the viscosities that depend on the ice thickness and concentration. To obtain realistic
deformation, however, these bounds must allow several orders of magnitude variatio
the viscosities. The viscous—plastic timescale in regions of nearly rigid ice is on the or
of 1 s for 100-km grid lengths, and 0.01 s for 10-km grid lengths. This necessitates the
of implicit methods for timesteps larger than a few seconds, particularly on high-resolut
grids.

Hunke and Dukowicz [12] present an alternative regularization, accomplished by int
ducing an elastic contribution to the strain rate in such a way that the EVP and VP moc
are identical at steady state,

éag%-i-z—];?mj +%Ukk5ij +£5ij = €jj. ©)
We take advantage of the steady-state equivalence of the models by choosing paramet
that the elastic waves nearly damp out during subcycling within each timestep. Depent
on how the elastic parametEris chosen, the timescale is 3 to 5 orders of magnitude largs
than the VP timescale. Therefore, this formulation can be discretized explicitly with
acceptably long timestep, a great advantage for implementations on parallel machines
highly resolved grids.

3. TIME RESPONSE

The VP model is highly nonlinear, and numerical schemes must include some sor
iterative process in order to accurately capture the transient behavior of the model. Altho
some authors have noted the need to subcycle the VP model under changes in the fo
because the rheology is slow to converge to steady state (e.g., [6, 8]), many more aut
did not heed that advice and used the model with 1-day time steps and daily varying wi
(e.g.,[5,9, 10, 14, 16, 17]). More recently, VP modelers have recognized the converge
error and incorporated “pseudo-timestepping,” an iterative procedure, into the numer
method (e.g., [1, 7, 11, 18]).

Even under smoothed wind forcing the VP model response can be markedly inaccu
as we found in realistic Arctic simulations used to compare early formulations of the E
and VP models [13]. The simulations were driven by 6-h ECMWF atmospheric data
1990-1994, averaged every 3 days and linearly interpolated to the 4-h timestep.

Although the EVP and VP ice distributions in that study could not be distinguishe
based on observational data such as SSM/I, we found that the differing treatments of
ice internal stress term by the two numerical schemes led to noticeable differences in
responsiveness of the modeled ice to changes in the wind forcing. In particular, the
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model showed a much slower response time to changes in the forcing patterns than di
EVP model. Ice in the central Arctic has been observed to respond quickly to chang
wind conditions; Campbell notes that floe ice obtains a steady-state motion within a f
hours after a change of wind stress [4]. Drifting buoys also exhibit this behavior, as sho
in [13].

The difficulty is strictly numerical and arises from a linearization that must be performe
to discretize the equations. The problem is most easily illustrated with one-dimensio
(zonal) flow. Assumingrty, ty) = (7, 0), v = 0 and no variation in thg direction, the VP
model equations become

au 0011
m

X T ®
au P

011=(§+77)&—E, 9

012 = 0, (10)
au P

020 = (C—U)&—E, (11)
P 1

_ , 12

¢ = Toujax] (z\/r e—2) (12)

n =t/ (13)

The nonlinearity is apparent when (12) is combined with (9) and (11). The internal ice str
must be linearized in the discretization; this is what “linearization” refers to in this pape

At this point, it is convenient to point out the fundamental behavior described by tr
rheology. When the ice is divergingu/ox > 0 and

P/ | 1

When the ice is convergingu/ox < 0 and

011—5 —1/ +?— ;

that is, the ice possesses a bulk strengtlagainst convergence that is not present for
diverging conditions. Sea ice is a highly fractured material that resists compression
pulls apart easily.

There are several approaches to solving the equations. Substiytiagd discretizing
the momentum equation (8) in time, we have the standard VP numerical formulation

ur‘l+l _ un P ou n+1
m— = — n— n. 14
AT 8X{(§+n) ™ }th (14)
The superscript refers to the time discretization associated with the timeate@he VP
model is usually solved implicitly with a fairly long timestep, typically a few hours to 1 day
For such long timesteps, the acceleration term on the left can be neglected, and the tran:
to steady state is given approximately by the transient iterates of the resulting numer
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scheme. Because these iterates are slaved to the timestepping through the accele
term, solutions of the standard VP model require several timesteps to reach steady
(for constantr), resulting in the slow response to forcing changes observed in the \
simulations of [13]. A detailed, one-dimensional analysis of this approach is presente
[12]. A“pseudo-timestepping” process has recently been implemented in VP models, wk
iterates the equatio®(10) times during each timestep [7, 18].

A second approach was taken in the original version of EVP [12], which was used for
EVP-VP comparison. The viscosities were held fixed through the timedtégenoted by
the superscripn) while the stress and momentum equations were subcycled with a sma
timestepAte (denoted by the superscrikt

Ukl gk

9 8uk+1
m— = — n_— n, 15
At X {(E +m' ] +1 (15)

The reason for implementing the EVP model in this way was to reproduce the result:
the standard VP numerical model as closely as possible. Although the viscosities were
constant, subcycling (15p(100) times on each timestep allowed the velocity to adjus
more quickly to changes in the forcing.

A third approach is to include the viscosities in the subcycling, so that the entire mom
tum equation is subcycled under changes in the foreing

uk+l gk

9 kauk-‘rl N
- - -~ — . 16
Mt ax[(H”) o }'FT (16)

This method provides the most accurate approximation of the nonlinear sffemsd is
the objective of improvements to the EVP model described in the next section.

4. EVP MODEL IMPROVEMENTS

Linearization of the internal stress term causes the computed principal stress stat
lie outside the elliptical yield curve, a problem that is exhibited by both the VP numeric
model and the original EVP formulation. The main problem was that the viscosities were
updated enough during the timestep in either model. The constitutive law, which is hig
nonlinear, must be iterated for the stresses, strain rates, and viscosities to all convert
the yield curve.

To address this issue, the EVP numerical model now updates the viscosities du
subcycling as in Eq. (16), so that the entire dynamics component is subcycled within
timestepAt. Taken alone, this change would require an increased number of operation
compute the viscosities and thus would greatly hinder efficient numerical solution of
equations. However, the new dynamics code is roughly as efficient as the earlier ver:
because of a change in the definition of the elastic parangetEris now defined in terms
of a damping timescale for elastic wavés,as

el
3
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where T is a tunable parametent, < T < At. (Here, At = At/N is the dynamics
timestep, andN is the number of subcycles.) Then the stress equation (7) becomes

30”' 62 1—92 P P .
ot + Eaij + ——owdij + —=6ij = TTAGH.

(17)

All of the coefficients on the left-hand side are constant except for the las® @hdnges
only on the longer timestept. This modification compensates for the decreased efficienc
of including the viscosity terms in the subcycling, thereby allowing more accurate stre
states to be obtained with the same amount of computational work.

We illustrate the improved stress state in a geometrically simplified test problem. T
dynamics equations are solved on anx880 grid with Ax = Ay =16 km, At =1 h,
T = 1296 s, andAte = 30 s. The ice distribution is fixed, with constant 2-m ice thicknes:
and a concentration fieldthat varies linearly in th&-direction from 0 to 1 and is constant
in y. Three small, closely spaced islands are included for investigation of model behavio
the Canadian Arctic archipelago, to be discussed in a future publication, and the doma
enclosed by land. Boundary conditions specify zero ice thickness, concentration, veloc
and stress for all land grid cells.

Imposed ocean stresses are circular and centered in the square domain, as sho
Fig. 1a,

U, = +0.12y — Ly)/Ly.
V, = —0.1(2x — Ly)/Ly,
where 0< x <Ly =128x10°P m and 0<y <L, =1.28x 10° m. The wind field

(Fig. 1b) consists of a linear, symmetric 5 m/s contribution and a nonlinear, time-depenc
contribution that varies 33% from a divergent velocity field whose average amplitude

FIG. 1. Streamlines of (a) ocean current and (b) wind fields, proportional in length to the field strength. T
current speed ranges from 0 to 0.14 m/s; windspeeds vary between 4 and 10 m/s in this shap2iBq0 s).



0 "asd||2 8y} Uo SaSSaNS aARY S| UdaI9

N ‘RemdlisaqpaamMm ‘asdl||a 8y} Wol) 9JUEBISIP S81edIpul J0j02 aY1 JO AlISUSIUI 8Y | BPISINO SASSAJIS aARY S||99 MO||9A pue pal ‘apIsul S8SSalls aney S||19d

|@rggy asdi|joaJIp 1] 10U Op S8SSANS YJIYM SMOYS UWN|0D 1YBLI 8L "1X8) Y} Ul PaQLIOSap UOITe|NWLIO) MU ay) UM S}NSal SMOYS Mol wonog ayi i[zT] jo
uone|nwio} dA3 [eulbuo ayy Ag paonpoud synsal smoys mol dol ay ] ‘wajqo.d 181 0P8 Ue 10} sassails ediound pue (s/w) uauodwod Ad0jPA a9l 2 914

LO0
n
] 000 =
=
2 m
P4
>
[a]
LL
Q
< AN
LU
(%]
&
L = s
T 1=>5 0=>
w |
[a]
o
= 10
o
>
w
L0°0-
0r O
—
o

asdl||3 JJ0 ssaa3s |edidund N Juauodwod ADORA 3D



26 ELIZABETH C. HUNKE

3 m/s, with a period® = 4 days:

Ua =5+ [sin(zgt) - }sin(zlix)sin(a), (18)
Vo =5+ [sin (%) — 3} sin (2:_yy> sin (t—f) (29)

The wind stressz,, is computed using bulk formulas with stability and quadratic de
pendence on the wind speed, following [3], with an ice surface roughness lengtk of ¢
1074 m.

For these simulations the Coriolis parameter is taken to be constant, and the ocean ti
term is computed from the (geostrophic) currents. The components of the surface st
forcing are then

Tz = Tax + prw|Uw - u|[(Uw - U) C089 - (Vw - l)) Sin@] - mf(vw - v)a
Ty = Tay + CuwPuw|Uw — U[[(V,y — v) COSE + (U, — u) Sind] + mf(U,, — u),

whereU,, is the ocean current amd= 0.436332 radian (25.

The top row of Fig. 2 shows results produced by the original EVP formulation of [12
the bottom row shows results with the new formulation. The left column demonstrates t
the velocity fields are nearly identical, while the the new formulation’s improved stress st
is apparent in the middle column: stresses that once lay outside the elliptical yield curv
physically unrealistic state, are now on or inside the curve.

The normalized principal stress states plotted here and in Sectigraido, are the
eigenvalues of the stress tensgrdivided by the pressurB. If there is any ice present in
a grid cell, P is nonzero and the ice generally has a nonzero stress state (see Egs. (9)
(11)). P may be very small, in which case themormalized elliptical yield curve is quite
small and lies very close to the origin, corresponding to near-zero stresses and approxi
free drift. (If P is identically zero, then there is no ice in the grid cell and the ice stress
are zero by definition.) As long as the viscosity has not reached its maximum limit, t
stresses obey the elliptical relationship given by Eqgs. (2)—(6); normalizing the stresses \
P makes the ellipses a uniform size.

All ice whose viscosity has not reached its maximum limit is assumed to be yielding;
internal stress state lies on the curve and it is said to be in a state of plastic flow, while
with stresses inside the yield curve is flowing viscously. That is, points whose stresse:s
inside the normalized ellipse have reached the maximum viscosity limit, and the rheolc
is linearly viscous with a constant viscosity. The relationship between the linear viscc
principal stresses no longer satisfies (2), and thus the stress states fall inside the ellip
curve.

The right column shows the location of points in the domain which lie inside (blue) ¢
outside (red/yellow) the yield curve; the intensity of the color gives an indication of the
distances from the curve. Stresses in green cells lie on the ellipse. Note that ice along
right edge of the domain is in a state of viscous flow for both formulations. In this regic
the ice concentration is high (greater than 0.9) and the imposed surface stresses are fo
the ice against the right wall. The ice resists such compression with high viscosities t
are artificially bounded above, resulting in “creeping” linear viscous flow. The origin:
(“old”) formulation limited the viscosity above as in [18] Withtmax = 2.5 x 10°P kg/s,
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which is equivalent to limiting\ below (see Eq. (4)) witih i, = 2 x 102 s7L. In the new
formulation, the regularization is achieved through elastic waves instead of creeping fl
However,A still appears in the denominator on the right-hand side of Eq. (17), and we
Amin = 1071 571,

Where ice concentrations are lower than about 0.8 (left four-fifths of the domain), i
strength is low and the ice drifts relatively freely. In this case the ice internal stresses lie
the yield curve, and the constitutive law does not play an important role in the dynamics
the simulated ice pack.

5. VISCOUS EFFECTS IN MARGINAL REGIONS

To ensure against nonlinear instabilities, the original formulation of the VP model i
cluded a minimum limit for the viscositymin = 4 x 108 kg/s [8], although the limiting
criterion has been relaxed in subsequent modeling studies [J. Zhang, personal comn
cation]. Analogous to imposingnax in regions of high ice concentration, setting such &
minimum transforms the rheology from plastic to linear viscous. If the ice velocity vari
spatially, then this minimum stress can contribute significantly to the force balance in
even though the ice concentration is low enough that the pack should exhibit little or
strength. In a study of floe collisions in the marginal ice zone, where ice concentrations
fairly low, Lu et al [15] note that the computed VP internal ice stress is artificially larg
compared to the measured data, when the original valgg;pfs used.

The results shown in Fig. 2 were calculated without an imposed minimum viscosi
Figure 3 illustrates the effect of settiggi, = 4 x 10 kg/s in the original and new versions
of the EVP dynamics code. (This limiting is accomplished in the new code by constraini
A < Amax=8x 108/P s1in Eq. (17).) The minimum viscosity determines the width
of the boundary layer by imposing a maximum gradient of the velocity field; thatis,
effectively sets maximal strain rates through its dependenat (see Eq. (4)). This limit
can be reached easily near land boundaries becaus8 on land, as is evident in both
panels of Fig. 3.

The limit can also be reached in regions where the ice streAgéhow and strain rate
magnitudes are moderate, as on the left side of the domain in Fig. 3a. Results from
original code reveal a considerable effect where the viscosity is pinngg.tdf there is
no limit on ¢, as in Fig. 2, then the velocity gradient can be quite large and the bound:
layer lies within a grid cell or two of the boundary.

The new formulation of the model does not produce the wide boundary layer at the
side of the domain (Fig. 3b). Because the upper viscosity limit is defined in termswodl
the lower limit is not, there is a range Bffor which ¢max < ¢min- INn the original formulation
the minimum constraint was applied following the maximum limitgrresulting in the
boundary layer seen in Fig. 3a. In the new formulation, the minimum was applied fir
followed by the maximum constraint, resulting in very sntalind a boundary layer less
than a grid cell wide.

6. ELASTIC EFFECTS IN RIGID REGIONS

Because of residual elastic waves, ice deformation fields produced by the EVP mc
can be noisy in regions where the ice is nearly rigid, depending on the choice of parame
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in the model. This problem becomes particularly apparent at high resolution when

prescribed subcycling is insufficient to damp the elastic waves. In regions that sho
be rigid, waves appear in the deformation field in both space and time, and although
ice velocities are quite small, the differential ice motion from one grid cell to the next c:
be of considerable magnitude. Ridging schemes for ice thickness distribution models
the ice deformation rates to determine the opening and closing of leads and ice ridg
events. Convergence causes the ice in a grid cell to thicken through ridge building. If t
grid cell experiences divergence in the next timestep, open water is created in which nev
grows quickly under freezing conditions. This new ice then ridges and the process contin
an effective “pump” forming very thick ice.

The problem originates in the new formulation for the elastic paranketber the formu-
lation of [12], E was defined in terms of ice concentration, ice thickness, timestep, and g
size in a manner that guaranteed stability of the solution. The new formulation incorpore
the useful concept of a damping timescale for the elastic wavyeand guarantees stability
as long aAt. sufficiently resolvesT. In other words, the elastic waves will be damped
and the solution will converge iAte is chosen small enough to resolve a givienor if
T is chosen long enough to be resolved by a given We will define what we mean by
“sufficient resolution” below.

6.1. Analysis

Analysis of the stability and damping properties of the model equations aids in und
standing the results that follow. To simplify the analysis, we assume one-dimensional zc
flow (that is,v = 0 and no variation in thg-direction). At steady state, Eqg. (17) can be
solved foro1; andos,. Incorporating the steady-state expressionor

P[é 1
=3 |3(5-1) 1)

into the time-dependent expression &af given by Eq. (17), we have

d011 1+ e? P /1+ e? 1 €11
ot AT C’“‘E(T)K?“)X_l]‘ (20)
To simplify the notation, define
1+ € P(1+ €?)?
A= —— B=—+-—— 21
4 8e2A (1)

and consideP andA constant for now. Dropping nonhomogeneous terms in Eq. (20) at
combining the resulting equation with a homogeneous form of the momentum equatiol

au 0011
m—=—",
ot X
we obtain a simple wave equation,

92u Adu B 32u

S = 22
ot2 + T ot mT 9x2 (22)
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At this point the elastic and viscous—plastic timescales discussed in [12] become evic
by relating each of the first two terms with the last and performing a scale analysis:

mT mA
Te=1/—AX, T,=—AX% 23
e=1/ 5 5 (23)

6.1.1. Damping. Suppose that takes the forng ®*-«Y and note that only wavenum-
bersk satisfyingk?Ax? < 1 are meaningful on a grid (noef represents the exponential
function and = +/—1). From Eq. (22) we obtain the dispersion relation

A Bk?
=0

2 .
+ 7| _——
@ T @ mT

Solutions are overdamped wheris a pure imaginary number, that is, when

AZmAx2
4B

T <

This result highlights the dependence of damping on the grid ssaléfor fixed T).
Substituting the expressions (21) farand B, we have

emAX2A
< —

T
8P

This relation is easily satisfied in regions where the ice strength given isysmall and
rates of strainf) are large; the ice motion is overdamped, and elastic waves do not app¢
However, in rigid regions$? is large andA is small, and the ice motion is underdamped. In
this case the decay rate is controlled by the imaginary past given by—i A/2T.

In general, the elastic waves decay faster for smaller valu€s afd therefore we want
the damping timescale to be as short as possibleisftoo small, however, theAt, must
be very small and the computational requirement becomes too large for climate stud
Von Neumann stability analysis provides the relationship betWeand At that must be
satisfied.

6.1.2. Stability. Now assume thathas the forma"e** and its time dependence satisfies
a"! = xa". Then the characteristic equation associated with Eq. (22) is

AAte\ , AAte  BK2At2
1+ —=|a2—(2 A+1=0.
< + ) ( ot +

Solutions are stable whene\at < 1, that is, for

AAte  BK2At2
- _
T 2mT ’

and using Egs. (21) and (23), we find the stability region bounded by the hyperbolic funct
At (5

T2

(This analysis parallels that in [12], and the stability region is similar to that shown in Fig.
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of that paper.) Stability is ensured when

At
—2 <2
Te

which translates into the relationship

BAt2 P(1+ e)2At2
> = .
AmAXx? 32mAX2e2A

(24)

The objective is to maximize damping while maintaining stability. Again, trouble arise
whereA is small andP, which depends exponentially on the ice concentration, is larg
in regions of rigid ice. Two options are to decreask or to increasd . We have takefT
constant in both space and time (necessary for the efficiency gains discussed in Sectic
and increasing its value degrades the damping characteristics. Decreasing the tisteste
increases the computational time and is not feasible for climate studies. A third option i
limit B/4mAx? such that (24) is satisfied. Thisis equivalent to limitPgA, and we use this
expression for guidance in the two-dimensional numerical model. In particular, we constt

P CTAXxAyY
<
max(A, Amin) At2

: (25)

where constants and typical mass are incorporated into the tuning par&@nétas con-
straint effectively allows the waves to damp out more quickly by decreasing the amplitt
scaling factorA|.

6.2. Simulation Results

The same test case examined in previous sections is used here to explore the conseqt
ofthese choices. Figure 4 shows the ice divergence, velocity, and principal stress compor
for four different cases. The region of interest is the far right side of the domain, whe
the ice concentration is close to 1 and the ice should be nearly rigid. The linear compotr
of the applied wind field (see Egs. (18) and (19)) tends to push the ice toward the ug
right corner, shown in the middle column. Because the highly compact ice is confined
the boundary, it resists such compression and exhibits little motion in the corner. Ther
a sharp shear zone at the left edge of the rigid region, caused by the circular compone
the wind stress and the ocean current acting on less compact (and therefore lower stre
ice. The color scale is cropped-ai.5 x 107 s~1 to show finer detail in the rigid region.
For all of these calculations, the damping times@als fixed at 1296 s, the forcing changes
each hour At = 3600 s), and the ice dynamics equations are subcycled under the char
in forcing. Table Il gives the relevant parameters for each of the cases discussed belov

Row (a) shows the results fart, = 3 s, which we will refer to as the “converged case.”
In this case, we increased the subcycling so thiat« T and Eq. (24) is satisfied. The
standard case is shown in row (b), for whial = 30 s. The effect of the elastic waves is
readily apparent along the right side of the divergence feldi, although the ice velocity
u is small, similar to the converged case.

The effect of imposing the constraint (25) is shown in row (c) of Fig. 4, using
615 kg/nt. The velocities in the rigid region are slightly larger in the damped case than
either the converged or the standard case, but they are still quite small. More importantly
simulations that evolve an ice thickness distribution, the divergence field is much smoot
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TABLE Il
Conditions for the Test Cases Shown in Fig. 4

Case Ate Comments

(a) Converged 3s Eq. (25) not enforced

(b) Standard 30s Eq. (25) not enforced

(c) Damped 30s Eq. (25) enforced

(d) Filtered 30s Standard caseumvV(V - u)

u principal stress

a,

Ty

Ty

a,
2 em/s

_

[+

FIG. 4. Divergence (10° s™%), velocity (m/s) in the top right corner of the domain, and normalized principal
stress components for (@t. = 3 s, (b) Ate = 30 s (the standard case), (&), = 30 s with damping, and
(d) Ate = 30 s with filtering.
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although its magnitude is somewhat larger than the converged case (a). Other simula
(notshown) reveal that - uin the damped case has the same general pattern and magnit
in rigid regions as the standard case, highly filtered and smoothed.

This similarity is evident in the principal stress states lying in the convergence half
the ellipse (lower left). Recall from Fig. 2 that the stress states lying inside the ellipse
from the rigid region on the far right side of the domain. In this area, the rates of str:
become small enough so that the viscosity upper limit (defined hy) comes into play,
the stress term in the momentum equation (1) is linearized with constant viscosity, and
normalized stresses fall inside the ellipse. The stress states lying inside the lower left
of the ellipse belong to cells in the far right portion of the domain; the standard case is ¢
convergent there in an average sense, as is the converged case.

Itis significantto note thatthis damping process does not affect the velocity or deformat
rates in lower ice concentration regions.

We also explored the possibility of damping the divergence field directly, without sign
icantly changing the velocity field itself. This can be accomplished by adding an expli
damping term to the momentum equation of the farmV (V - u), whereu is a constant
damping coefficient. Unfortunately, such an addition causes the subcycling to become
stable. Therefore, rather than include the term during the subcycling process (whic
computationally expensive anyhow), we use its mathematical form to create a numer
filter that selectively damps only the divergence field and which is applied following tt
subcycling. The results are shown in row (d) of Fig. 4, for a run which took three pas:
through the filter on each timestept. Fewer iterations of the filtering process do not
smooth the divergence field sufficiently; more iterations produce a divergence field qual
tively similar in the rigid region to that of the damped case. In lower concentration regiol
however, the filtering causes highly erroneous behavior, particularly near sharp edges
as land boundaries. These errors also appear in the velocity field under iterative filtering
shown in Fig. 4d. Because of this method’s computational expense, no attempt was n
to selectively apply the filter only in rigid regions.

7. SUMMARY

We developed the EVP model because of its desirable computational characteris
especially with regard to parallelization issues. In the process we discovered that the |
model also handles the nonlinear internal ice stress term expediently, overcoming cel
difficulties experienced by the VP model. In particular, because of its explicit numeric
formulation, the EVP model efficiently updates all rates of strain that determine the |
stress, including the viscosities which traditionally are lagged in the timestepping proce
Less error in the nonlinear term allows the EVP model’s ice to respond much more quic
to changing surface stress conditions than the VP model’s, and the internal ice stress
indicates thattheice is in a state of plastic flow exceptin highly compact, nearly rigid regio

Intwo regimes the original VP model [8] collapses to alinear viscous rheology by limitir
the viscosities both above and below, which correspond to high and low ice concentrat
respectively. In the original VP and EVP formulations, the lower viscosity limit creates wi
boundary layers by limiting the slope of the velocity field. The improved EVP formulatio
avoids the problem by maintaining consistency of the viscosities and the strain rates thrc
subcycling. In the rigid regime, however, elastic waves introduced in the EVP model
not damp as quickly and can have some effect on ice deformation rates, especiall
high resolution. Two methods of damping the waves are presented, termed “filtering” ¢
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“damping” here. Smoothing of the ice divergence using a gradudilter is somewhat
effective in highly compact regions, but the iterative process necessary to adequately d
the elastic waves causes large errors in less compact areas. An alternative method inv
limiting the quotient? / A to maintain effective damping while enforcing a stability criterion
inrigid regions. This method is extremely successful at smoothing the ice deformation re
in only the regions needed, but it is not yet known what effect it will have in more realist
simulations that incorporate a sophisticated ice thickness distribution.

Examples presented in the appendixes further illuminate the behavior of the nonlin
internal stress term. While the conditions imposed for these examples may be too restric
for the VP model’s pathological behavior to become apparent in full, two-dimensior
simulations, the examples serve to illustrate two important points: (1) one must take c
when interpreting numerical results with physical reasoning, as the results may be
a numerical artifact of the discretization method than a physically realistic phenomen
and (2) under certain forcing conditions, steady-state solutions of the VP model may
be unique, if they exist at all.

In conclusion, this study of the EVP model has illustrated some of the difficulties a
sociated with the numerical solution of viscous—plastic-type sea ice dynamics models
addition, we have presented a new formulation that improves the modeled stress state
we have characterized and explained the model’s behavior. Because the elastic pdame
has been redefinedin the new formulation, the stability criterion enforcEdrthe original
EVP model must now be incorporated in a different manner, by limiting the qudrient
This criterion ensures that residual elastic waves in rigid regions are sufficiently dampe

APPENDIX A: LINEARIZATION OF THE ELLIPTICAL YIELD CURVE

Discretization of the visco-plastic stresses destroys the elliptical relationship between
principal stresses, even when the solution is fully converged. To illustrate this, consider
equations for zonal flow (8)—(13) under the following conditions:

(zx, Ty) = (7, 0) constant
P = constant
boundary conditions: (u,v) = (0,0) atx=0,L,

initial conditions: (u,v) = (0,0) att=0.

We pose the problem at steady state, where the VP and EVP mathematical models
exactly the same, and make no assumptions regarding methods of regularization. The
cipal stresses can be computed from (9)—(11); they depend on the sigyvof (divergence
or convergence) according to the elliptical yield curve formulation:

_ (&¢tn)au 1

ou ol ( P )ax 20
aX — (¢=m)ou _ 1
on=A\"p Jax T 2
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Suppose that a smalnumerical error occurs during the iteration process, witk 0
ast — oo:

n

qu n+1
(£1+9).

™ —

au
0X

Then the principal stresses become

For each case (divergence and convergence) the principal stress formulas may be com
by eliminatinge:
e€+1 4 1 au 0
= P Y _— >
A= \e—1)" T \e—1) ax

-1 1 au
O'|=(—e2+1)0||—(—e2+1), &<0
The relationship betweesy ando is linear throughout the iteration, regardlesssofA
nearly converged numerical solution close to steady state is shown in Fig. 5 and illustr:
the fact that linearization of the stress fundamentally changes the nature of the rheo
near steady state. Neither subcycling the EVP model nor the similar pseudo-timestep|

procedure for the VP model alters this steady-state result. Note that these linear feat
are evident in the 2D simulations shown in Figs. 2 and 4.

APPENDIX B: EXISTENCE AND UNIQUENESS

The VP model exhibits some other peculiar behavior at steady state. Removing all
erence to the viscositieg @nd¢) to make the equation’s singularities perfectly evident
and assuming that there are no variationg (8, = 0), the VP constitutive and momentum
equations can be written in the form

[(14 €011 + (1 — €02z + P]A = 2Pd,u, (B.1)

[(1—€)ou+ (14 €)oz+ P]A =0, (B.2)
P

o128 = @axv, (B.3)

0x011 = —Tx, (B.4)

0x012 = —Ty, (B.5)

where

A= %[(axu)z(l + ) + ()" (B.6)
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FIG.5. Principal stresses for the zonal flow problem described in Appendix A, produced by a one-dimensic
version of the EVP numerical model similar to that used in [12], but with the improvements described in Sectiol
The same linear features are exhibited by stresses in Figs. 2 and 4.

andP is the ice pressure defined in terms of ice concentration and thickness as in Eqg.
We wish to solve the problem wittry, ry) = (0, 0) and under the following boundary
conditions on the velocity:

(u,v) =(0,00 atx =0,

(u,v) = (0,vp) atx=1L.
That is, there is no surface stress; the motion is driven by the moving right bounde
(Assumevg > 0.) We will see that solutions exist only for constant, nonzero stresses at t

boundaries; we leave these conditions unspecified for now.
The stresses follow from Egs. (B.4), (B.5), and (B.2),

011 = Cy,

012 = C,
P+ci(l—e?

Op=——"—""7T "5 —

1+¢? ’

for constants; andc; given by the boundary conditions. For now, asswmandc, are
nonzero. Substituting the stresses into Egs. (B.1) and (B.3), we have

e?
——(2¢c P)A = Poyu,
1+e2( 1+ P) M

A = ——0xv.
28202 x?
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Combining these yieldg,u = c3dxv, where

2ci+ P

= 2c(14€?)’

Integrating and applying the velocity boundary conditions, we finditat0 and a solution
for v exists only ifc; = —P/2. Applying (B.6) to (B.3), we have

2 P
A = — 2 = .
e\/(axv) > Zczaxv

By conventionA > 0; asolution exists only if, = P/4e, butthat solutionis undetermined.
In particular,y = vox/L andv = vox?/L? are both solutions to the problem, with= 0,
011 = 022 = —P/2, andoqs = P/4e

Note that ifoq, is specified to be zero on the boundaries, thegn= 0 by (B.3) andv
cannot satisfy its boundary conditions. Similarly, no solution exisdsgiifor o2, is zero on
the boundaries.
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